Ramesh KRISHNAMURTI
| EdCAAD, University of Edinburgh

' Modelling Design
. Descriptions

CAO & ROBOTIQUE EN ARCHITECTURE ET BTP

ABSTRACT

Une vue génerdle de la representation schématique employe€ par le systeme
MOLE est representeé. La relation du ‘‘kind-slot-filler’’ est schematise€
avec deux sortes de mechanisme enhéritant, pour la construction
hierarchiquement structure€ des descriptions des projets.

An overview of the representation scheme employed by the MOLE
modelling system is presented. The kind-slot-filler relationship is outlined,
together with two sorts of inheritance mechanisms for constructmg
hierarchically structured design descriptions.

CAD & ROBOTICS IN ARCHITECTURE & CONSTRUCTION 133

MODELLING DESIGN DESCRIPTIONS

P Ramesh Krishnamurti

EJdCAAD
Department of Architecture
University of Edinburgh
Scotland

An overview of the representation scheme employed by the MOLE modelling
system is presented. The kind-slot-filler relationship is outlined, together with two
sorts of inheritance mechanisms for constructing hierarchically structured design
descriptions.

Une vue génerdle de la representation schématique - employe€ par le systeme
MOLE est represente€. La relation du ‘‘kind-slot-filler’’ est schematise¢ avec
deux sortes de mechanisme enhéritant, pour la construction hierarchiquement
structure€ des descriptions des projets.

1. Introduction

This paper provides a flavour of the representation scheme that underlie the MOLE
modelling environment being developed at EACAAD. It reports research that is directed at
_ computer-based systems that can accommodate the idiosyncratic nature of design practice,
without prescriptions to the form or content of designs. That is, systems that assist in the
design process by enabling designers to make ‘reasonable’ statements about design objects; to
ask ‘reasonable’ questions about these objects; and to perform ‘reasonable’ tasks on these
. objects.

- Implicit in this approach is the view that designing is an activity dependent on

Gesxgners perceptions of design tasks and their resolution. In the context of computer-aided
2 desngn, this view of design demands that the crucial element in any machine environment lies
| in the ability of the machine to accept (partial) descriptions of design objects. Moreover,
ese descriptions can be manipulated according to some (perhaps unanticipated) criteria that
e designer may wish to apply.

A model for intensional descriptions of objects is presented. That is, a description that
“'*can be structured so that it can be used to recognise objects and can be compared with other
. descriptions. Such a description of an object should be organised around entities with
ociated descriptions, it must be able to represent partial knowledge about an object, andit
must accommodate multiple descriptors which can describe the object from different
Viewpoints. Moreover, these descriptions should possess a quality of truth in that they reflect
he (factual or otherwise) beliefs held by the designer. One way to treat these descriptions is
10 regard them as statements that belong to some logical framework.

T R —

134 CAO & ROBOTIQUE EN ARCHITECTURE ET BTP

2. The building blocks of a description
2.1. Kinds, slots, fillers

A representational structure that is akin to frames [1] or semantic nets [2] is employed.
Where it differs is that there 15 no prescribed interpretation associated with the relational links
between object descriptions. That is, entities have no connotation beyond the conventions one
observes when using them. Of course, entities employed by specific decision procedures must
have specific denotations.

The representation uses three sorts of entities: kinds, slots and fillers. A kind K
corresponds to an object. A filler F can be any object and represents a value for some
property or feature that a kind may have. A slot s denotes a relationship between a kind and
a filler. There are no restrictions imposed on filler and slot types. Any filler can be associated
with any slot. A filler may also be a kind.

It is clear that a hierarchically structured description for objects can be constructed from
these basic building blocks. As a simple illustration consider the possible description of the
kind DOOR given in the form of a relational table.

KIND SLOT FILLER
DOOR type PANNELLED
o material RED_PINE
construction HOLLOW
height 1600

door_knob DOOR_KNOB

manufacturer UNDERWOOD & CO
DOOR_KNOB material BRASS

manufacturer LOCKE

Pictorially, the description given in the above table can be drawn as shown in figure 1.

" DOOR
type materlal construction helght door_knob manufacturer

LIRS e

PANNELLED RED_PINE HOLLOW 1600 DOOR_KNOB UNDERWOOD & CO

=

material manufacturer

BRASS LOCKE

Figure 1 Pictorial representation of the description of a kind:
Kinds and fillers are represented by vertices and slots by labelled edges. A description
corresponds to a rooted labelled graph.

CAD & ROBOTICS IN ARCHITECTURE & CONSTRUCTION 135

2.2. Fillers

In principle anything can be a filler, some possibilities of which are indicated by the
following table.

CATEGORY FILLER

kinds DOOR, RED, TUESDAY, *
numbers 200, 3.1415923

beliefs yes, no, dont_know

statements ‘follows from rule 5(a)’
indirections SEMl:party_wall, SHAPE:origin
undefined []

exclusion X

,. The above table presents some interesting examples. For instance, RED and TUESDAY
~ that do not appear to be kinds can be considered as kinds with no explicit description. The
~ asterisk symbol * %’ is a special filler to denote an unnamed kind. It serves as a useful device
when we want to describe kinds without having to explicitly label every kind that occurs in a
description. The empty list symbol ‘[]’ is a special filler to denote unspecified fillers. Since
designing is a constructive activity of creating and updating design descriptions, there may be
situations when one is undecided about what fillers to employ for a given slot. The ‘y’
“ symbol is a special filler that is useful when we want to stipulate that some property or
~ feature is to be excluded from the description of a kind. A case in point is when a kind
inherits (see next section) part of its description from another kind and some of the inherited
_ description is to be excluded.

Indirections act as permanent pointers to descriptions that occur elsewhere and which are
" independent of possible changes to the referred kind. For example, consider the description
- of a semi-detached house. It has two houses, say one on the left and the other on the right.
" Clearly, right wall of the left house and the left wall of the right house refer to the same
- entity, namely, the party wall of the semi-detached house. Moreover no matter what changes
. are made to the description of the semi-detached house we require the two walls to continue
| to refer to the same party-wall. Indirections provide the means to ensure this.

R :

" The above list is necessarily incomplete. Other possibilities include ranges, procedures,
_decision rules, sets of values etc that can be fillers. For instance, suppose that a certain type
of manufactured bath comes in three colours, say avocado, white and grey. Then, the colour
(part of the description of the kind BATH could be the set { AVOCADO, WHITE, GREY }.

2 It should be nofed that the list of acceptable fillers for any modelling system depends on
: e available interpreters to evaluate the descriptions.

e

136 CAO & ROBOTIQUE EN ARCHITECTURE ET BTP

3. Inheritance of partial descriptions

Often in the course of designing one is interested in a collection of similar objects - for
example, all the doors on a new housing estate. There are things that can be true of each -
for example, that they are all made by the same manufacturer. Within this collection of doors
there may be things that are different from one another- again for example, some may be
internal doors and others external doors.

This similarity between partial object descriptions can be considered as an inheritance of
propertics from one object to another. Two sorts of inheritances are allowed. The first is
termed a variant of a kind which provides a view of an object as seen with respect to the
attributes of another kind. That is, a form of (super)kind to (sub)kind relationship. The
second is termed an instance of a kind which occurs when two kinds contain references to the
same object, and when the description of one of the kinds is altered without changing the
other. The distinction between the two forms of inheritances lies in the roles played by the
slots in the description of a kind.

3.1. Inheritance through variants

Consider the archetypal kinds MAN and MUSICIAN. Clearly, some individual, say
BEETHOVEN, is both. It is possible for both man and musician to have slots with the same
name - for instance, ‘preferences’, where for the former it denotes manly preferences and for
the latter specifically to musical preference. Thus, in the description of BEETHOVEN, the
preference slots are disambiguated only when the context in Wthh they occur are specified.
This process of disambiguating the slots is termed as tagging.

There are two rules of inheritance which are stated as follows :
1. A kind inherits the parts of each of its super-kinds

Suppose P = Q = R where = denotes the direction of inheritance between kinds. Then, by
the above rule, Q inherits the slots (and their associated fillers) from P, and R inherits the
slots from both Q and P.

2. The parts inherited from its nearest super-kind masks those inherited from any other
kind. :

Cornsider figure 2 which has two distinct inheritance paths: P = Q = R and S = R. Both Q
and S have parts identified have parts identified by the slot named b. The part in Q identified
by c is actually inherited from P but has been altered by associating it with a different filler G
F. By rule 1, R inherits the b slot from both Q and S. To distinguish between them, the
slots are tagged as b(Q) and b(S) respectively. In the second case, Q’s altered inherited slot
c(P) masks the c slot of P that R would otherwise inherit since Q is an immediate super-kind
of R whereas P is a super-kind at one remove. Thus, ‘nearness’ in the second rule is a
measure of the distance of inheritance between a kind and its variant. The complete slots -
tagged with the name of its parent kind - of R are:

a(R) - R’s own a slot

b(Q)

*#/CAD & ROBOTICS IN ARCHITECTURE & CONSTRUCTION 137

c(P) - slot ¢ from P with filler G as a result of a

change to the description of Q and so, masks

slot ¢ with filler F in P’s own description -
.. f(P) ""
b(S)

The exclusion part d = % in the description of R ensures that the d slot in the description of S
is not inherited.

X

Figure 2 Illustrating the inheritance between kinds:
R inherits all slot-filler parts from the other kinds except ¢ = F in the description of P which is
masked by the part ¢(P) = G in the description of Q, and slot d in the description of S which is
excluded by d(R) = X.

3.2. Inheritance through instances

" Instances occur when the description of a kind is updated. Consider figure 3 which .
. Tepresents_the description of Tom and Dicks’ houses. Notice that the kinds TOMS-HOUSE
. and DICKS-HOUSE both contain references to the same kind DOOR.

Slippose the material of the door-knob in Dick’s house is stated to be made of brass but at the
same time the description of Tom’s house is required to remain unaltered. This is achieved by
creating instances of DOOR and DOOR-KNOB as illustrated in figure 4.

Here the back_door slot of Dick’s house now refers to the instance DOOR -1 whose
door_knob slot masks that in DOOR (by inheritance rule 2 above). The material slot of the
| door_knob is inserted in the description of a new instance of DOOR_KNOB, namely
DOOR_KNOB -1. Instances are identified by the name of the parent kind together with an
Instance number separated by the instance operator ‘ - ' The arrow ‘=’ is used to denote
. Inheritance. between a kind and its instances. Instances inherit all but the altered property
| from their parent kind. That is, an instance masks all inherited slots with the same name. In
er words, the tag of any slot in the description of an instance is the tag of any slot in the

138 CAO & ROBOTIQUE EN ARCHITECTURE ET BTP

TOMS_HOUSE DICKS_HOUSE

front_door back_door

A
N

. colour construction door_knob

BLUE HOLLOW DOOR-KNOB

Figure 3 Partial descriptions of Tom and Dick’s houses

TOMS_HOUSE DICKS_HOUSE

front_door b><or back_door
DOOR

AN i

colour construction door_knob door_knob

S N |

BLUE HOLLOW . DOOR_KNOB =—>> DOOR_KNOB -1

material

CRASS

Figure 4 Updating the database shown in figure 3
x marks the deleted slot.
= indicates inheritance between a kind and its instance.

description of its parent super-kind.

A similar situation occurs when a slot inherited from a kind is updated. Figure 5
illustrates this where the front door of Tom’s house and back door of Dick’s house are both
variants of an archetypal door. The figure also illustrates the use of the special * %’ filler.
Notice that door_knob slot added to the back door of Dick’s house is explicitly tagged with
the name of its parent kind, namely DOOR. This ensures that unwanted door_knob part

“CAD & ROBOTICS IN ARCHITECTURE & CONSTRUCTION 139

which would otherwise be inherited from DOOR is masked and thus maintains part update
consistency.’

TOMS_HOUSE DICKS_HOUSE
front_door back_door
* - DOOR —_— »
/ \
colour construction door_knob door_knob(DOOR)
/ \
BLUE HOLLOW DOOR_KNOB ——=> DOOR_KNOB -2
materlal

BRASS

Figure 5 Updating the filler of a slot inherited from a variant.
The updated door_knob slot has been tagged by the parent kind DOOR.
* indicates an unnamed kind or filler.

4. Creating and updating a model
4.1. Part expressions

Recall that any description can be represented as a labelled digraph in which a path
corresponds to a conjunction of slots and kinds relating a kind and a filler. A model is a
collection (possibly disjointed) of such labelled digraphs. It is convenient to treat the model
as a database consisting of parts expressed as identities of the form: ‘

§ & Ks-=F
Part identities are tag-wise parametric. That is, the identity K:s = F is in the database

. Whenever kind K has in its description a slot s (inherited or otherwise) with filler F. K:s
. stands for K:s(T) where tag T need not equal K.

o

. It is easy to show how - by a simple traversal algorithm - a kind is related to a filler. In
fact, updating the model corresponds to following paths in these digraphs coupled with the
appropriate addition and deletion of labelled edges. A path in a labelled digraph can be
expressed as part expressions :

§ Kisg: ... s, =F

A part expression is deemed true whenever there are fillers Xy e » X, such that part

identities K:sy = X,, ..., X;is, = F are in from the database.

i |- D ——— i

140 CAO & ROBOTIQUE EN ARCHITECTURE ET BTP

Part expressions are interesting because they provide a unified syntactic format for
asserting (or modifying) partial descriptions to the database, and for querying-the database
through the use of variables. A query succeeds if all the variables can be unified to slots or a
kind or a filler to make the query into a part statement. A few examples are presented to
illustrate this dual aspect of part expressions.

The database shown in figure 3 can be described by the following part expressions.

TOMS_HOUSE:front_door = DOOR
DOOR:construction = HOLLOW
DOOR:door_knob = DOOR_KNOB
DOOR:colour = BLUE

DICKS_HOUSE:back_door = DOOR

Thus, to construct the database shown in figure 4 the following part expression can be
employed to assert to the database:

DICKS_HOUSE:back_door:door_knob:material = BRASS
which is made true by creating new instances of DOOR and DOOR_KNOB.

In a similar vein part expressions can be employed to query the database such as:
TOMS_HOUSE:front_door:construction = ? .

where ? denotes a variable which is instantiated to HOLLOW. And,
DICKS_HOUSE:?.door_knob:material = BRASS

will instantiate the variable ? to the slot back_door. More complicated examples are given in

(3]

S. Modelling algorithms

In this section a brief outline of some of the algorithms for maintaining the modelling
enviornment are described. A rigorous treatment is given in [4]

The modelling environment, at any given time, maintains the current list of known
kinds, their slot-filler pairs, the lists of pair-wise kind-variant and kind-instance relationships.
The slot-filler pairs are partitioned into two sets, (1) corresponding to simple slot-filler
relationships; and (2) corresponding to tagged slot-filler relationships. The latter corresponds
to inherited slots that have been modified in the description of the variant. All other 'slots
inherited by a kind can be recovered from the kind-variant inheritance relationships and hence
need not be stored. All this information is kept essentially in the form of relational tables.
Initially the model is empty. The modelling environment also maintains a collection of
evaluators to process fillers of various sorts. While in practice the list of available filler
evaluation procedures is finite, for the purposes of explanation it suffices to assume that
evaluators exist for each sort of filler.

CAD & ROBOTICS IN ARCHITECTURE & CONSTRUCTION 141

5.1. Extracting descriptions

The algorithm is essentially a backtrack scarch performed on a labelled digraph rooted at
the vertex corresponding to the given kind. There are two sorts of descriptions: unevaluated
and evaluated descriptions. In an unevaluated description a search path terminates if-the filler-
is not a kind. In an evaluated description all fillers are evaluated. For instance some fillers
may represent messages to invoke procedures that return values. Others, such as indirections,
represent references to kinds. Whenever the search finds a filler to be evaluated it does so,
and if the value returned is a kind it continues the search, otherwise the particular search path
terminates with the evaluated filler.

The description algorithm can be tweaked to provide various forms of partial
descriptions of a kind such as the listing the parts explicitly attached to a kind, the description
of a kind as seen with respect to the parts inherited from another kind and so on.

5.2. Updating the Jatabase

We corsider he following four operations: (i) adding a simple part identity; (ii)
removing a simple part identity; (iii) altering an inheritance relationship; and (iv) altering a
composite part statc ment.

5.2.1. Adding a simple part identity

If the referred kind K is not in the database, then the list of kinds is updated, and the
K-s-F relation appended to the slot-filler table. Otherwise, there two cases to consider
according as the tag of s equals parent kind of K or not. It is important to test against the
parent kind since only instances have parents that are not themselves. In both cases replace
any existing K-s-G relationship by the new part. If equality does not hold, then the part
corresponds to a modification of an inherited slot and is tagged as such.

5.2.2. Removing a simple part identity

If F is specified removing a part identity is straightforward. The only thing to note is
that if s refers to an inherited slot then the exclusion relationship K-s-) must be added to the
database provided F # . If F is unspecified then all K-s-? relationships are determined and
each in turn is removed.

5.2.3. Altering an inheritance relationship

Adding an inheritance relation is trivial. In removing an inheritance relationship, the
effect is to ‘freeze’ the description inherited from K by V. That is, each V-s-F part inherited
from K must be asserted as a tagged slot-filler relationship to the database before the K-V
inheritance link is severed.

5.2.4. Altering a composite part statcment
Instances are created when a composite part is added or removed from the description of

akind. A composite part statement corresponds to an expression of the form K:s: ... :s, = F,
n > 0. Here a backtrack search with filler evaluation has to be performed in case the

o

142 CAO & ROBOTIQUE EN ARCHITECTURE ET BTP

case is when each intermediate filler is a kind. In this case a new instance of each
intermediate filler is created to which a slot-filler relationship is added. The last part identity
say K -:s, = F where K - is the newly created instance is either added or removed
according to the nature of the alteration. The operations involved correspond to one of the
three described above.

Clearly, updating the database may cause an explosion of instances and slot-filler
relationships and checks can be devised to minimise this. Beside this and the case when
intermediate fillers are not simple kinds, other problems can arise. For example, when
descriptions of kinds are recursive; that is, the search may revisit a vertex on the search path.
For a fuller discussion on updating composite parts the reader is referred to the paper cited
above [4].

6. Drawings

The visible effort in any design activity is spent on design drawings. This implies that
CAD environments must provide graphics facilities that are capable of carrying and
manipulating descriptions of the geometry of spatial objects. Space considerations do not
permit further elaboration. However, it has been [5, 6] shown that parametrised spatial
descriptions can be represented as kind-slot-filler structures. Further, it is possible to describe
geometrical operations as sequences of part expressions.

7. Implementation

A prototype modelling system MOLE [7] based on the ideas presented here has been
implemented in an enhanced version of C-Prolog dynamically linked to C routines for faster
i/o and graphics. MOLE has been applied to shape grammars, to kitchen space planning
problems and to space recognition problems [8].

8. Conclusion

Some of the salient features of a representation for modelling design descriptions has
been presented. Design descriptions can be constructed from simple building blocks, through
part expressions. One of our motivations for this work rests on the belief that it is possible to
place such a modelling environment within systems that are capable of handling the
conventions and rules that designers choose to adopt. While it is not suggested that designers
produce designs by some sort of top-down iterative process of creating and altering design
descriptions, the use of computers to assist in the design activity does impose a certain
discipline on them. A consequence is that designers should be be aware - self-consciously or
otherwise - of the kinds of ‘knowledge’ they possess (and employ) for their designs. Equally,
as designers become progressively ‘computer literate’, it becomes imperative that appropriate
software is available to suit their needs. One result of this work is the raised hope that, in the
near future, aspects of design activity can be ably assisted by ‘design literate’ software.

g s g

-

AD & ROBOTICS IN ARCHITECTURE & CONSTRUCTION 143

Acknowledgements

I am grateful to Aart Bijl for his encouragement and support, and for his many
constructive discussions during this research. The research reported in this paper has been
carried out within the context of research programmes at EdCAAD funded by the Science and
Engineering Research Council and the ACORD project funded by the CEC/Esprit programme.

References
Minsky, M., ‘A framework for representing knowledge’’, in P. Winston (ed.), The

psychology of computer vision, NMcGraw-Hill, New York, 1975.

Woods, W. A., ““What’s in a link?"’, in D. G. Bobrow and A. Collins (eds.),
Representation and understanding, McGraw-Hill, New York, 1975.

Krishnamurti, R., *“The MOLE Picture Book: on a logic for design’’, DesignhC‘omputing,
Vol. 1 (1986), forthcoming. :

Krishnamurti, R., ‘‘Representing design knowledge'’, Planning and Design, Vol. 13
(1986), forthcoming.

Szalapaj P. J., and A. Bijl, ‘'Knowing where to draw the line’’ Proc. IFIP Working
Conference on CAD, Budapest, Sep. 1984.

Bijl, A., and P. J. Szalapaj, ‘‘Saying what you want in words and pictures’’, Proc.
INTERACT' 84, London, Sep. 1984.

Tweed, A. C., ‘*“The MOLE User’s Manual’’, Technical report, EdCAAD, University of
Edinburgh, 1985.

Tweed, A. C., ““The MOLE Exercise Book”’, Technical report, EQCAAD, University of
Edinburgh, 1986.

: Author: Ramesh Krishnamurti

Address: - EdCAAD, University of Edinburgh
. 20 Chambers Street

Edinburgh EH1 1JZ

Scotland

Phone: (031) 667 1011 x 4566 Telex: 727 442 UNIVED G

	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23
	page 24
	page 25
	page 26

